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Effect of boundary conditions on scaling in the ‘‘game of Life’’

Hendrik J. Blok and Birger Bergersen
Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

~Received 4 December 1996!

The debate as to whether the ‘‘game of Life’’ is self-organized critical remains unresolved. We present
evidence that boundary conditions play an important role in the scaling behavior, resulting in apparently
contradictory results. We develop an analytic form for the scaling function, and demonstrate that periodic
boundaries force saturation, while open boundaries exhibit no such transitions on similar scales. We also
consider the removal of boundaries altogether.@S1063-651X~97!10704-8#

PACS number~s!: 05.50.1q, 05.40.1j, 64.60.Ht
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Some of the most interesting and complex dynamics h
been observed in systems which exhibit self-organized c
cality ~SOC! @2#, a description of systems which natural
tend toward a critical state~lacking any natural length scales!
without requiring any tuning of external parameters. For
last several years there has been a debate as to wheth
‘‘game of Life’’ ~GL! @1#, a two-dimensional cellular au
tomaton, exhibits self-organized criticality. In the case of
GL it is suggested this takes the form of a power-law dis
bution of relaxation times after the system is perturbed fr
equilibrium,D(t)}t2b, whereb'1.4.

The ‘‘game of Life’’ is defined on a square two
dimensional lattice of sites which are eitheralive or dead.
The lattice is updated synchronously, and the rules govern
the evolution vaguely mimic logistic dynamics:~1! A live
site will remain alive if exactly two or three of its eigh
nearest-neighbors are alive; otherwise it will die.~2! If a
dead site has exactly three live neighbors, it will be togg
to the live state~birth!.

Much of the debate@3–6# has centered around finite-siz
computer simulations of the GL for which differing boun
551063-651X/97/55~5!/6249~4!/$10.00
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ary conditions have been applied. On small lattices
power-law description seems justified, but it is uncerta
whether this extends to the thermodynamic limit. Near
critical point the correlation length diverges, so the bound
conditions may not play a diminishing role as the latti
grows. To determine how the dynamics scale to the therm
dynamic limit we apply a finite-scaling technique and ma
an explicit fit of the scaling function.

We considered both periodic and cold~often called
‘‘open’’ ! boundary conditions on square lattices of sideL.
Cold boundaries assume that all cells beyond the bounda
aredead, and periodic boundaries associate each point on
edge with a corresponding point on the far edge. The ini
equilibrium state was generated from an initially rando
50% occupancy, and 10 000 random site perturbations~flip-
ping either a dead site to live, or vice versa! were performed,
each after the previous avalanche had stabilized. We fo
no evidence of perturbation-site dependencies or initial tr
sients. To avoid ‘‘flip fails’’ ~perturbations originating in
dead regions which decay to the original state in just o
time step! we restricted candidate perturbation sites to j
te

-

-

FIG. 1. Normalized distribu-
tions of lifetimest of avalanches
produced by repeated single-si
perturbations in the ‘‘game of
Life’’ on a 2563256 lattice with
periodic boundaries. The cumula
tive distribution ~a! is fitted to a
decaying power law with critical
exponent b51.376 and critical
lifetime tc51865.~b! The deriva-
tive of this fit ~solid line! is com-
pared to the original distribution
and a power law neglecting drop
off ~dashed line!.
6249 © 1997 The American Physical Society
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live sites and their nearest neighbors. The temporal per
icity of the lattice, indicating that the avalanche has sta
lized, was tested statistically by theactivity of the system
~the sum of all flips in each time step, be it dead to alive,
vice versa!, the requirement being that the activity mu
cycle with some periodp<12 for 24 time steps. This metho
was chosen to facilitate the removal of boundaries altoget
While it is possible that stable, mobile structures such
gliderscould give the illusion of stability under this schem
it seldom happened in practice, and did not significantly
fect the dynamics.

By analyzing the cumulative distribution of avalanche
C(t) ~all avalanches larger than or equal tot), we were able
to smooth the Gaussian noise observed in the original di
bution D(t), as shown in Fig. 1. We hypothesized that t
cumulative distribution obeys a finite-scaling relationship
the formC(t)5t12bg(t/tc), whereg is a scaling function
and tc depends on the lattice size. The scaling function
the following properties:~1! g(x)→1 for x!1, and ~2!
g(x)→0 for x@1.

We observed that the scaling function fit remarkably w
to the form g(t/tc)5exp(2t/tc), where tc is an adjustable
fitting parameter, as is the critical exponent 12b. The point
t5tc is called the critical lifetime, and represents a typic
time scale up to which the power law is a valid description
the dynamics. Runs of various dimensions were fitted
the critical exponent agreed closely among them with
average for both boundaries and all length scales
b51.37760.009, while the critical lifetime varied withL, as
is shown in Fig. 2.

Given the above form for the cumulative distributio
the original distribution of lifetimes also obeys a finit
scaling law D(t)5(b21)t2bf (t/tc), where f (x)
5„11x/(b21)…exp(2x). Notice that this scaling function
has the peculiarity that it rises above unity ne
t5(22b)tc @see Fig. 1~b!#. This anomalous ‘‘hump’’ may
have misled some researchers’ estimates of the critical e
nent. The spread of data can be reproduced via a ran

FIG. 2. Scaling behavior of the critical lifetime in the ‘‘game o
Life’’ for periodic (1) and cold (3) boundaries. The error bars ar
calculated assuming no correlations in the lifetimes of avalanc
Also shown are power-law fits for both periodic~solid line! and
cold ~dashed line! boundaries with exponentszp50.7260.05 and
zc50.5660.06, respectively. Notice the transition away fro
finite-scaling for large, periodic lattices.
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sampling of the distributionD(t), suggesting that no corre
lations exist between successive avalanches.

Finite scaling predicts the transitiontc should scale with
L astc}L

z. Figure 2 shows power-law fits for both period
and cold boundaries with zp50.7260.05 and
zc50.5660.06, respectively. The latter agrees favorab
with AlstrÖm and Leão’s estimate of 0.52@5#. The cold-
boundary runs scale well with the lattice size, but there
pears to be a transition away from finite-scaling for t
periodic-boundary runs, aroundL'128, to a constant
tc51905659. Clearly, the GL with periodic boundaries do
not exhibit SOC, but has both a characteristic size and t
scale.

On scales that we have explored~up to L5512) we see
no evidence of saturation for cold boundaries. Howev
even for the largest lattice the critical lifetime (tc'1685)
falls short of the average observed after crossover for p
odic lattices. This suggests that we may need to exp
larger lattices to observe a deviation from criticality. Th
estimated value ofzc predicts saturation forL.560, but the
large error margin in the proportionality constant may ac
modate a lattice twice this size. Hence, to test whether
scaling behavior continues, and if the GL with cold boun
aries is SOC, we may need to explore lattices on scale
L.1100. The largest previous study using cold bounda
@5# tested up toL51024, with no observed transition awa
from finite scaling.

Some confusion has arisen from the study of the aver
decay time@4,5# instead of the critical lifetime as the statist
of choice for measuring scaling behavior. If the critical lif
time scales as proposed above, then we expect the ave
decay time to scale aŝt&}L (22b)z. From the above data we
calculated (22b)z50.4560.03 and 0.3560.04 for periodic
and cold boundaries, respectively. Calculating the prop
tionality constant from the integral^t&5*1

`tD(t)dt, we com-
pare the observed average decay time to the predicted sc
in Fig. 3. Periodic runs again exhibit saturation arou

s.

FIG. 3. Scaling behavior of the average decay time of a
lanches in the ‘‘game of Life’’ for periodic (1) and cold (3)
boundaries. Assuming finite scaling for the critical lifetime, we c
predict a power law for both periodic~solid line! and cold~dashed
line! boundaries with exponents (22b)z which evaluate to
0.4560.03 and 0.3560.04, respectively. Again, we observe a tra
sition away from finite scaling for periodic lattices on scales larg
thanL'128.
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FIG. 4. Sample lattice configu
ration of the ‘‘game of Life’’ in
the absence of boundaries aft
1905 perturbations showing~a!
two distinct regions, a relatively
massive core of localized clusters
and a long trail of gliders radiating
diagonally out to infinity. The
largest cluster~b! has a character-
istic size ofL'1000.
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L5128, in agreement with Bennett and Bourzutschky@4#,
while cold runs fit closely on all scales, confirming AlstrÖm
and Leão’s conclusions. The confusion is a direct result
using differing boundary conditions. Again, we stress t
much larger lattices will be needed to resolve the issue a
whether cold boundaries produce SOC.

We also explored the effect of removing boundaries a
gether, via dynamic memory allocation@7#. Initializing the
space with anL550 square lattice with 50% occupation
the origin, the system was allowed to develop naturally, w
perturbations as before. Due to intensive computational
mands, only 2000 perturbations were aqcuired. The final
tice configuration, shown in Fig. 4, reveals a sparse, frac
like structure of live clusters which produce glide
~radiating diagonally outwards! while evolving. It appears
that after an initial 1000 perturbation transient the domin
cluster ~produced by the initial seed! ceased growing, and
stabilized with a characteristic size ofL'1000. Using the
same analytical technique as above, we estimate a cri
lifetime tc51904671, further inclining us to believe that GL
is subcritical with a characteristic avalanche lifetime. Ho
ever, more data need to be aqcuired to determine if this
havior is significant or merely a by-product of the small in
tial seed.

The unbounded system is unusual in that gliders are n
absorbed by boundaries, and radiate outwards~at a speed of
one site diagonally per four time steps!. Avalanches produce
gliders fairly regularly, and the total count of live sites i
creases linearly with time~see Fig. 5!. Unfortunately, the
running time for a simulation then grows at least as
square of the number of perturbations.

The gliders may have another, even more important,
fect. These gliders may be perturbed, producing station
clusters in the ‘‘glider path’’ of other clusters. Eventuall
the simulation will produce a large number of isolated clu
ters. Each perturbation will, with some probability, produ
gliders. If any glider interacts with another cluster, it m
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again produce other gliders, and so on. This hierarchy
avalanches produced by the long-range interactions of
lated clusters via gliders may produce dynamics entir
unique to the unbounded system. The tail of the lifetim
distributionD(t) may exhibit a Pareto-Le´vy, or power-law,
tail ~see, for instance,@8#! which returns the behavior to th
critical state.

In conclusion, our results indicate that boundaries pla
crucial role in the scaling behavior of the ‘‘game of Life,
and the disparity in previous studies@3–6# is caused thereby
Periodic boundaries and the unbounded run suggest tha
follows a power law with exponentb51.377 up to a critical
lifetime, but then drops off exponentially. The critical life
time scales with the lattice size only for small lattices, a
seems to stabilize attc51905 in the thermodynamic limit
implying that the GL is subcritical. Independent resear
exploring the critical phase transition in a class of stocha

FIG. 5. In the absence of boundaries, the total number of
sites increases linearly with time~perturbations! in the ‘‘game of
Life.’’ This is due mainly to the continual production of gliders b
avalanches, which are no longer absorbed by boundaries.
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cellular automata@9# seems to confirm this conclusion.
Cold boundaries appear to impede the scaling beha

such that the transition away from criticality cannot be se
on the scales we studied. We stress that, because the GL
the least very close to criticality, further research is necess
to determine conclusively if the effects of cold boundar
play a diminishing role as the lattice grows. We also str
or
n
s at
ry
s
s

that the data for the unbounded lattice are extremely spa
and must be supplemented before much credence ca
given to them.
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