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Effect of boundary conditions on scaling in the “game of Life”
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The debate as to whether the “game of Life” is self-organized critical remains unresolved. We present
evidence that boundary conditions play an important role in the scaling behavior, resulting in apparently
contradictory results. We develop an analytic form for the scaling function, and demonstrate that periodic
boundaries force saturation, while open boundaries exhibit no such transitions on similar scales. We also
consider the removal of boundaries altogetii€i063-651X97)10704-9

PACS numbegps): 05.50+q, 05.40+j, 64.60.Ht

Some of the most interesting and complex dynamics havary conditions have been applied. On small lattices the
been observed in systems which exhibit self-organized critipower-law description seems justified, but it is uncertain
cality (SOQ [2], a description of systems which naturally whether this extends to the thermodynamic limit. Near a
tend toward a critical statdacking any natural length sca)es critical point the correlation length diverges, so the boundary
without requiring any tuning of external parameters. For theconditions may not play a diminishing role as the lattice
last several years there has been a debate as to whether tirews. To determine how the dynamics scale to the thermo-
“game of Life” (GL) [1], a two-dimensional cellular au- dynamic limit we apply a finite-scaling technique and make
tomaton, exhibits self-organized criticality. In the case of thean explicit fit of the scaling function.

GL it is suggested this takes the form of a power-law distri- We considered both periodic and col@ften called
bution of relaxation times after the system is perturbed from‘open”) boundary conditions on square lattices of side
equilibrium, D(t) <t ~®, whereb~1.4. Cold boundaries assume that all cells beyond the boundaries

The “game of Life” is defined on a square two- aredead and periodic boundaries associate each point on an
dimensional lattice of sites which are eith@live or dead  edge with a corresponding point on the far edge. The initial
The lattice is updated synchronously, and the rules governingquilibrium state was generated from an initially random
the evolution vaguely mimic logistic dynamicét) A live 50% occupancy, and 10 000 random site perturbatifiis
site will remain alive if exactly two or three of its eight ping either a dead site to live, or vice verseere performed,
nearest-neighbors are alive; otherwise it will di@) If a each after the previous avalanche had stabilized. We found
dead site has exactly three live neighbors, it will be togglecho evidence of perturbation-site dependencies or initial tran-
to the live statgbirth). sients. To avoid “flip fails” (perturbations originating in

Much of the debat¢3—6] has centered around finite-size dead regions which decay to the original state in just one
computer simulations of the GL for which differing bound- time step we restricted candidate perturbation sites to just
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FIG. 2. Scaling behavior of the critical lifetime in the “game of FIG. 3. Scaling behavior of the average decay time of ava-
Life” for periodic (+) and cold (<) boundaries. The error bars are lanches in the “game of Life” for periodic €) and cold (x)
calculated assuming no correlations in the lifetimes of avalanchesoundaries. Assuming finite scaling for the critical lifetime, we can
Also shown are power-law fits for both periodfsolid line) and  predict a power law for both periodisolid line) and cold(dashed
cold (dashed ling boundaries with exponenig,=0.72-0.05 and  line) boundaries with exponents {2)z which evaluate to
z.=0.56+0.06, respectively. Notice the transition away from 0.45+0.03 and 0.3%0.04, respectively. Again, we observe a tran-
finite-scaling for large, periodic lattices. sition away from finite scaling for periodic lattices on scales larger

thanL~128.

live sites and their nearest neighbors. The temporal period-
icity of the lattice, indicating that the avalanche has stabi-sampling of the distributiolD(t), suggesting that no corre-
lized, was tested statistically by trativity of the system lations exist between successive avalanches.
(the sum of all flips in each time step, be it dead to alive, or  Finite scaling predicts the transitidp should scale with
vice versy, the requirement being that the activity must L astc=L? Figure 2 shows power-law fits for both periodic
cycle with some periogh< 12 for 24 time steps. This method and  cold  boundaries  with z,=0.72£0.05 and
was chosen to facilitate the removal of boundaries altogethez.= 0.56+0.06, respgctively. The latter agrees favorably
While it is possible that stable, mobile structures such agvith Alstrom and Léa's estimate of 0.55]. The cold-
gliderscould give the illusion of stability under this scheme, boundary runs scale well with the lattice size, but there ap-
it seldom happened in practice, and did not significantly affears to be a transition away from finite-scaling for the
fect the dynamics. periodic-boundary runs, aroundl~128, to a constant
By analyzing the cumulative distribution of avalanches,t.=1905+59. Clearly, the GL with periodic boundaries does
C(t) (all avalanches larger than or equaltjo we were able not exhibit SOC, but has both a characteristic size and time
to smooth the Gaussian noise observed in the original distriscale.
bution D(t), as shown in Fig. 1. We hypothesized that the On scales that we have exploréap to L=512) we see
cumulative distribution obeys a finite-scaling relationship ofno evidence of saturation for cold boundaries. However,
the form C(t)=t'"Pg(t/t.), whereg is a scaling function even for the largest lattice the critical lifetime £ 1685)
andt. depends on the lattice size. The scaling function hagalls short of the average observed after crossover for peri-
the following properties:(1) g(x)—1 for x<1, and (2)  odic lattices. This suggests that we may need to explore
g(x)—0 for x>1. larger lattices to observe a deviation from criticality. The
We observed that the scaling function fit remarkably wellestimated value of. predicts saturation foc>560, but the

to the formg(t/t,)=exp(—t/t,), wheret, is an adjustable large error margin in the proportionality constant may acco-
fitting parameter, as is the critical exponent h. The point modate a lattice twice this size. Hence, to test whether the

t=t. is called the critical lifetime, and represents a typicalscaling behavior continues, and if the GL with cold bound-
time scale up to which the power law is a valid description ofaries is SOC, we may need to explore lattices on scales of
the dynamics. Runs of various dimensions were fitted andt>1100. The largest previous study using cold boundaries
the critical exponent agreed closely among them with ar5] tested up td-=1024, with no observed transition away
average for both boundaries and all length scales ofrom finite scaling.
b=1.377+0.009, while the critical lifetime varied with, as Some confusion has arisen from the study of the average
is shown in Fig. 2. decay timd4,5] instead of the critical lifetime as the statistic
Given the above form for the cumulative distribution, of choice for measuring scaling behavior. If the critical life-
the original distribution of lifetimes also obeys a finite- time scales as proposed above, then we expect the average
scaling law D(t)=(b—1)t °f(t/t.), where f(x) decay time to scale g$)=L ™2 From the above data we
=(1+x/(b—1))exp(—x). Notice that this scaling function calculated (2-b)z=0.45+0.03 and 0.35 0.04 for periodic
has the peculiarity that it rises above unity nearand cold boundaries, respectively. Calculating the propor-
t=(2—Db)t, [see Fig. 1b)]. This anomalous “hump” may tionality constant from the integragt)= [7tD(t)dt, we com-
have misled some researchers’ estimates of the critical expgare the observed average decay time to the predicted scaling
nent. The spread of data can be reproduced via a randoin Fig. 3. Periodic runs again exhibit saturation around
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L=128, in agreement with Bennett and Bourzutschik}y  again produce other gliders, and so on. This hierarchy of
while cold runs fit closely on all scales, confirming Alstn ~ avalanches produced by the long-range interactions of iso-
and Léa’s conclusions. The confusion is a direct result oflated clusters via gliders may produce dynamics entirely
using differing boundary conditions. Again, we stress thatunique to the unbounded system. The tail of the lifetime
much larger lattices will be needed to resolve the issue as tdistribution D(t) may exhibit a Pareto-lwy, or power-law,

whether cold boundaries produce SOC. tail (see, for instancd8]) which returns the behavior to the
We also explored the effect of removing boundaries alto-critical state.
gether, via dynamic memory allocati¢i]. Initializing the In conclusion, our results indicate that boundaries play a

space with arL =50 square lattice with 50% occupation at crucial role in the scaling behavior of the “game of Life,”
the origin, the system was allowed to develop naturally, withand the disparity in previous studig®—6] is caused thereby.
perturbations as before. Due to intensive computational dePeriodic boundaries and the unbounded run suggest that GL
mands, only 2000 perturbations were aqcuired. The final latfollows a power law with exponerit=1.377 up to a critical

tice configuration, shown in Fig. 4, reveals a sparse, fractallifetime, but then drops off exponentially. The critical life-
like structure of live clusters which produce gliders time scales with the lattice size only for small lattices, and
(radiating diagonally outwarglswhile evolving. It appears seems to stabilize at=1905 in the thermodynamic limit,
that after an initial 1000 perturbation transient the dominanimplying that the GL is subcritical. Independent research
cluster (produced by the initial se¢dceased growing, and exploring the critical phase transition in a class of stochastic
stabilized with a characteristic size af1000. Using the

same analytical technique as above, we estimate a critical 14000

lifetime t,= 1904+ 71, further inclining us to believe that GL

is subcritical with a characteristic avalanche lifetime. How- 12000 |

ever, more data need to be aqgcuired to determine if this be- 10000 |

havior is significant or merely a by-product of the small ini-

tial seed. 2 8000 |
The unbounded system is unusual in that gliders are never J

absorbed by boundaries, and radiate outw#ati® speed of = 6000 r

one site diagonally per four time stgpswvalanches produce 4000 |

gliders fairly regularly, and the total count of live sites in-

creases linearly with timésee Fig. 5. Unfortunately, the 2000

running time for a simulation then grows at least as the 0 , , ,

square of the number of perturbations. 0 500 1000 1500 2000
The gliders may have another, even more important, ef- perturbations

fect. These gliders may be perturbed, producing stationary

clusters in the “glider path” of other clusters. Eventually,  FIG. 5. In the absence of boundaries, the total number of live
the simulation will produce a large number of isolated clus-sites increases linearly with timgerturbationsin the “game of
ters. Each perturbation will, with some probability, produceLife.” This is due mainly to the continual production of gliders by
gliders. If any glider interacts with another cluster, it may avalanches, which are no longer absorbed by boundaries.



6252 BRIEF REPORTS 55

cellular automat49] seems to confirm this conclusion. that the data for the unbounded lattice are extremely sparse,
Cold boundaries appear to impede the scaling behaviaind must be supplemented before much credence can be

such that the transition away from criticality cannot be seergiven to them.

on the scales we studied. We stress that, because the GL is at

the least very close to criticality, further research is necessary This work was supported by the Natural Sciences and

to determine conclusively if the effects of cold boundariesEngineering Research Council of Canada.

play a diminishing role as the lattice grows. We also stress
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